Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Phys Imaging Radiat Oncol ; 30: 100577, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38707629

RESUMEN

Background and purpose: Radiation-induced erectile dysfunction (RiED) commonly affects prostate cancer patients, prompting clinical trials across institutions to explore dose-sparing to internal-pudendal-arteries (IPA) for preserving sexual potency. IPA, challenging to segment, isn't conventionally considered an organ-at-risk (OAR). This study proposes a deep learning (DL) auto-segmentation model for IPA, using Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) or CT alone to accommodate varied clinical practices. Materials and methods: A total of 86 patients with CT and MRI images and noisy IPA labels were recruited in this study. We split the data into 42/14/30 for model training, testing, and a clinical observer study, respectively. There were three major innovations in this model: 1) we designed an architecture with squeeze-and-excite blocks and modality attention for effective feature extraction and production of accurate segmentation, 2) a novel loss function was used for training the model effectively with noisy labels, and 3) modality dropout strategy was used for making the model capable of segmentation in the absence of MRI. Results: Test dataset metrics were DSC 61.71 ± 7.7 %, ASD 2.5 ± .87 mm, and HD95 7.0 ± 2.3 mm. AI segmented contours showed dosimetric similarity to expert physician's contours. Observer study indicated higher scores for AI contours (mean = 3.7) compared to inexperienced physicians' contours (mean = 3.1). Inexperienced physicians improved scores to 3.7 when starting with AI contours. Conclusion: The proposed model achieved good quality IPA contours to improve uniformity of segmentation and to facilitate introduction of standardized IPA segmentation into clinical trials and practice.

2.
Adv Radiat Oncol ; 9(6): 101476, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38690296

RESUMEN

This article focuses on various aspects of breast radiation treatment planning, from simulation to field design. It covers the most common techniques including tangents, mono isocentric, dual isocentric, electron-photon match, and VMAT. This can serve as a guide for radiation oncology residents and medical students to advance their understanding of key aspects of breast radiation treatment and planning processes.

3.
Med Phys ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710210

RESUMEN

BACKGROUND: In radiation therapy (RT), accelerated partial breast irradiation (APBI) has emerged as an increasingly preferred treatment modality over conventional whole breast irradiation due to its targeted dose delivery and shorter course of treatment. APBI can be delivered through various modalities including Cobalt-60-based systems and linear accelerators with C-arm, O-ring, or robotic arm design. Each modality possesses distinct features, such as beam energy or the degrees of freedom in treatment planning, which influence their respective dose distributions. These modality-specific considerations emphasize the need for a quantitative approach in determining the optimal dose delivery modality on a patient-specific basis. However, manually generating treatment plans for each modality across every patient is time-consuming and clinically impractical. PURPOSE: We aim to develop an efficient and personalized approach for determining the optimal RT modality for APBI by training predictive models using two different deep learning-based convolutional neural networks. The baseline network performs a single-task (ST), predicting dose for a single modality. Our proposed multi-task (MT) network, which is capable of leveraging shared information among different tasks, can concurrently predict dose distributions for various RT modalities. Utilizing patient-specific input data, such as a patient's computed tomography (CT) scan and treatment protocol dosimetric goals, the MT model predicts patient-specific dose distributions across all trained modalities. These dose distributions provide patients and clinicians quantitative insights, facilitating informed and personalized modality comparison prior to treatment planning. METHODS: The dataset, comprising 28 APBI patients and their 92 treatment plans, was partitioned into training, validation, and test subsets. Eight patients were dedicated to the test subset, leaving 68 treatment plans across 20 patients to divide between the training and validation subsets. ST models were trained for each modality, and one MT model was trained to predict doses for all modalities simultaneously. Model performance was evaluated across the test dataset in terms of Mean Absolute Percent Error (MAPE). We conducted statistical analysis of model performance using the two-tailed Wilcoxon signed-rank test. RESULTS: Training times for five ST models ranged from 255 to 430 min per modality, totaling 1925 min, while the MT model required 2384 min. MT model prediction required an average of 1.82 s per patient, compared to ST model predictions at 0.93 s per modality. The MT model yielded MAPE of 1.1033 ± 0.3627% as opposed to the collective MAPE of 1.2386 ± 0.3872% from ST models, and the differences were statistically significant (p = 0.0003, 95% confidence interval = [-0.0865, -0.0712]). CONCLUSION: Our study highlights the potential benefits of a MT learning framework in predicting RT dose distributions across various modalities without notable compromises. This MT architecture approach offers several advantages, such as flexibility, scalability, and streamlined model management, making it an appealing solution for clinical deployment. With such a MT model, patients can make more informed treatment decisions, physicians gain more quantitative insight for pre-treatment decision-making, and clinics can better optimize resource allocation. With our proposed goal array and MT framework, we aim to expand this work to a site-agnostic dose prediction model, enhancing its generalizability and applicability.

4.
J Appl Clin Med Phys ; : e14375, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712917

RESUMEN

PURPOSE: Online adaptive radiotherapy relies on a high degree of automation to enable rapid planning procedures. The Varian Ethos intelligent optimization engine (IOE) was originally designed for conventional treatments so it is crucial to provide clear guidance for lung SAbR plans. This study investigates using the Ethos IOE together with adaptive-specific optimization tuning structures we designed and templated within Ethos to mitigate inter-planner variability in meeting RTOG metrics for both online-adaptive and offline SAbR plans. METHODS: We developed a planning strategy to automate the generation of tuning structures and optimization. This was validated by retrospective analysis of 35 lung SAbR cases (total 105 fractions) treated on Ethos. The effectiveness of our planning strategy was evaluated by comparing plan quality with-and-without auto-generated tuning structures. Internal target volume (ITV) contour was compared between that drawn from CT simulation and from cone-beam CT (CBCT) at time of treatment to verify CBCT image quality and treatment effectiveness. Planning strategy robustness for lung SAbR was quantified by frequency of plans meeting reference plan RTOG constraints. RESULTS: Our planning strategy creates a gradient within the ITV with maximum dose in the core and improves intermediate dose conformality on average by 2%. ITV size showed no significant difference between those contoured from CT simulation and first fraction, and also trended towards decreasing over course of treatment. Compared to non-adaptive plans, adaptive plans better meet reference plan goals (37% vs. 100% PTV coverage compliance, for scheduled and adapted plans) while improving plan quality (improved GI (gradient index) by 3.8%, CI (conformity index) by 1.7%). CONCLUSION: We developed a robust and readily shareable planning strategy for the treatment of adaptive lung SAbR on the Ethos system. We validated that automatic online plan re-optimization along with the formulated adaptive tuning structures can ensure consistent plan quality. With the proposed planning strategy, highly ablative treatments are feasible on Ethos.

5.
Pract Radiat Oncol ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38579986

RESUMEN

PURPOSE: Real-time adaptation of thoracic radiation plans is compelling because offline adaptive experiences show that tumor volumes and lung anatomy can change during therapy. We present and analyze a novel adaptive-on-demand (AOD) workflow combining online adaptive radiation therapy (o-ART) on the ETHOS system with image guided radiation therapy delivery on a Halcyon unit for conventional fractionated radiation therapy of locally advanced lung cancer (LALC). METHODS AND MATERIALS: We analyzed 26 patients with LALC treated with the AOD workflow, adapting weekly. We timed segments of the workflow to evaluate efficiency in a real-world clinic. Target coverage and organ at risk (OAR) doses were compared between adaptive plans (ADP) and nonadaptive scheduled plans (SCH). Planning robustness was evaluated by the frequency of preplanning goals achieved in ADP plans, stratified by tumor volume change. RESULTS: The AOD workflow was achievable within 30 minutes for most radiation fractions. Over the course of therapy, we observed an average 26.6% ± 23.3% reduction in internal target volume (ITV). Despite these changes, with o-ART, ITV and planning target volume (PTV) coverage (V100%) was 99.2% and 93.9% for all members of the cohort, respectively. This represented a 2.9% and 6.8% improvement over nonadaptive plans (P < .05), respectively. For tumors that grew >10%, V100% was 93.1% for o-ART and 76.4% for nonadaptive plans, representing a median 17.2% improvement in the PTV coverage (P < .05). In these plans, critical OAR constraints were met 94.1% of the time, whereas in nonadaptive plans, this figure was 81.9%. This represented reductions of 1.32 Gy, 1.34 Gy, or 1.75 Gy in the heart, esophagus, and lung, respectively. The effect was larger when tumors had shrunk more than 10%. Regardless of tumor volume alterations, the PTV/ITV coverage was achieved for all adaptive plans. Exceptional cases, where dose constraints were not met, were due to large initial tumor volumes or tumor growth. CONCLUSIONS: The AOD workflow is efficient and robust in responding to anatomic changes in LALC patients, providing dosimetric advantages over standard therapy. Weekly adaptation was adequate to keep pace with changes. This approach is a feasible alternative to conventional offline replanning workflows for managing anatomy changes in LALC radiation therapy.

6.
Radiother Oncol ; : 110178, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38453056

RESUMEN

OBJECTIVE: We explore the potential dosimetric benefits of reducing treatment volumes through daily adaptive radiation therapy for head and neck cancer (HNC) patients using the Ethos system/Intelligent Optimizer Engine (IOE). We hypothesize reducing treatment volumes afforded by daily adaption will significantly reduce the dose to adjacent organs at risk. We also explore the capability of the Ethos IOE to accommodate this highly conformal approach in HNC radiation therapy. METHODS: Ten HNC patients from a phase II trial were chosen, and their cone-beam CT (CBCT) scans were uploaded to the adaptive RT (ART) emulator. A new initial reference plan was generated using both a 1 mm and 5 mm planning target volume (PTV) expansion. Daily adaptive ART plans (1 mm) were simulated from the clinical CBCT taken every fifth fraction. Additionally, using physician-modified ART contours the larger 5 mm plan was recalculated on this recontoured on daily anatomy. Changes in target and OAR contours were measured using Dice coefficients as a surrogate of clinician effort. PTV coverage and organ-at-risk (OAR) doses were statistically compared, and the robustness of each ART plan was evaluated at fractions 5 and 35 to observe if OAR doses were within 3 Gy of pre-plan. RESULTS: This study involved six patients with oropharynx and four with larynx cancer, totaling 70 adaptive fractions. The primary and nodal gross tumor volumes (GTV) required the most adjustments, with median Dice scores of 0.88 (range: 0.80-0.93) and 0.83 (range: 0.66-0.91), respectively. For the 5th and 35th fraction plans, 80 % of structures met robustness criteria (quartile 1-3: 67-100 % and 70-90 %). Adaptive planning improved median PTV V100% coverage for doses of 70 Gy (96 % vs. 95.6 %), 66.5 Gy (98.5 % vs. 76.5 %), and 63 Gy (98.9 % vs. 74.9 %) (p < 0.03). Implementing ART with total volume reduction yielded median dose reductions of 7-12 Gy to key organs-at-risk (OARs) like submandibular glands, parotids, oral cavity, and constrictors (p < 0.05). CONCLUSIONS: The IOE enables feasible daily ART treatments with reduced margins while enhancing target coverage and reducing OAR doses for HNC patients. A phase II trial recently finished accrual and forthcoming analysis will determine if these dosimetric improvements correlate with improved patient-reported outcomes.

8.
Adv Radiat Oncol ; 9(1): 101319, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38260220

RESUMEN

Purpose: Recently developed online adaptive radiation therapy (OnART) systems enable frequent treatment plan adaptation, but data supporting a dosimetric benefit in postoperative head and neck radiation therapy (RT) are sparse. We performed an in silico dosimetric study to assess the potential benefits of a single versus weekly OnART in the treatment of patients with head and neck squamous cell carcinoma in the adjuvant setting. Methods and Materials: Twelve patients receiving conventionally fractionated RT over 6 weeks and 12 patients receiving hypofractionated RT over 3 weeks on a clinical trial were analyzed. The OnART emulator was used to virtually adapt either once midtreatment or weekly based on the patient's routinely performed cone beam computed tomography. The planning target volume (PTV) coverage, dose heterogeneity, and cumulative dose to the organs at risk for these 2 adaptive approaches were compared with the nonadapted plan. Results: In total, 13, 8, and 3 patients had oral cavity, oropharynx, and larynx primaries, respectively. In the conventionally fractionated RT cohort, weekly OnART led to a significant improvement in PTV V100% coverage (6.2%), hot spot (-1.2 Gy), and maximum cord dose (-3.1 Gy), whereas the mean ipsilateral parotid dose increased modestly (1.8 Gy) versus the nonadapted plan. When adapting once midtreatment, PTV coverage improved with a smaller magnitude (0.2%-2.5%), whereas dose increased to the ipsilateral parotid (1.0-1.1 Gy) and mandible (0.2-0.7 Gy). For the hypofractionated RT cohort, similar benefit was observed with weekly OnART, including significant improvement in PTV coverage, hot spot, and maximum cord dose, whereas no consistent dosimetric advantage was seen when adapting once midtreatment. Conclusions: For head and neck squamous cell carcinoma adjuvant RT, there was a limited benefit of single OnART, but weekly adaptations meaningfully improved the dosimetric criteria, predominantly PTV coverage and dose heterogeneity. A prospective study is ongoing to determine the clinical benefit of OnART in this setting.

9.
Biomed Phys Eng Express ; 10(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38241733

RESUMEN

This study explored the feasibility of on-couch intensity modulated radiotherapy (IMRT) planning for prostate cancer (PCa) on a cone-beam CT (CBCT)-based online adaptive RT platform without an individualized pre-treatment plan and contours. Ten patients with PCa previously treated with image-guided IMRT (60 Gy/20 fractions) were selected. In contrast to the routine online adaptive RT workflow, a novel approach was employed in which the same preplan that was optimized on one reference patient was adapted to generate individual on-couch/initial plans for the other nine test patients using Ethos emulator. Simulation CTs of the test patients were used as simulated online CBCT (sCBCT) for emulation. Quality assessments were conducted on synthetic CTs (sCT). Dosimetric comparisons were performed between on-couch plans, on-couch plans recomputed on the sCBCT and individually optimized plans for test patients. The median value of mean absolute difference between sCT and sCBCT was 74.7 HU (range 69.5-91.5 HU). The average CTV/PTV coverage by prescription dose was 100.0%/94.7%, and normal tissue constraints were met for the nine test patients in on-couch plans on sCT. Recalculating on-couch plans on the sCBCT showed about 0.7% reduction of PTV coverage and a 0.6% increasing of hotspot, and the dose difference of the OARs was negligible (<0.5 Gy). Hence, initial IMRT plans for new patients can be generated by adapting a reference patient's preplan with online contours, which had similar qualities to the conventional approach of individually optimized plan on the simulation CT. Further study is needed to identify selection criteria for patient anatomy most amenable to this workflow.


Asunto(s)
Neoplasias de la Próstata , Radioterapia Guiada por Imagen , Masculino , Humanos , Estudios de Factibilidad , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia
10.
Med Phys ; 51(1): 18-30, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37856190

RESUMEN

BACKGROUND: Online adaptive radiotherapy (ART) involves the development of adaptable treatment plans that consider patient anatomical data obtained right prior to treatment administration, facilitated by cone-beam computed tomography guided adaptive radiotherapy (CTgART) and magnetic resonance image-guided adaptive radiotherapy (MRgART). To ensure accuracy of these adaptive plans, it is crucial to conduct calculation-based checks and independent verification of volumetric dose distribution, as measurement-based checks are not practical within online workflows. However, the absence of comprehensive, efficient, and highly integrated commercial software for secondary dose verification can impede the time-sensitive nature of online ART procedures. PURPOSE: The main aim of this study is to introduce an efficient online quality assurance (QA) platform for online ART, and subsequently evaluate it on Ethos and Unity treatment delivery systems in our clinic. METHODS: To enhance efficiency and ensure compliance with safety standards in online ART, ART2Dose, a secondary dose verification software, has been developed and integrated into our online QA workflow. This implementation spans all online ART treatments at our institution. The ART2Dose infrastructure comprises four key components: an SQLite database, a dose calculation server, a report generator, and a web portal. Through this infrastructure, file transfer, dose calculation, report generation, and report approval/archival are seamlessly managed, minimizing the need for user input when exporting RT DICOM files and approving the generated QA report. ART2Dose was compared with Mobius3D in pre-clinical evaluations on secondary dose verification for 40 adaptive plans. Additionally, a retrospective investigation was conducted utilizing 1302 CTgART fractions from ten treatment sites and 1278 MRgART fractions from seven treatment sites to evaluate the practical accuracy and efficiency of ART2Dose in routine clinical use. RESULTS: With dedicated infrastructure and an integrated workflow, ART2Dose achieved gamma passing rates that were comparable to or higher than those of Mobius3D. Additionally, it significantly reduced the time required to complete pre-treatment checks by 3-4 min for each plan. In the retrospective analysis of clinical CTgART and MRgART fractions, ART2Dose demonstrated average gamma passing rates of 99.61 ± 0.83% and 97.75 ± 2.54%, respectively, using the 3%/2 mm criteria for region greater than 10% of prescription dose. The average calculation times for CTgART and MRgART were approximately 1 and 2 min, respectively. CONCLUSION: Overall, the streamlined implementation of ART2Dose notably enhances the online ART workflow, offering reliable and efficient online QA while reducing time pressure in the clinic and minimizing labor-intensive work.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Estudios Retrospectivos , Programas Informáticos , Radioterapia de Intensidad Modulada/métodos , Tomografía Computarizada por Rayos X , Dosificación Radioterapéutica
11.
Pract Radiat Oncol ; 14(2): e159-e164, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37923136

RESUMEN

PURPOSE: Online adaptive radiation therapy (ART) has emerged as a new treatment modality for cervical cancer. Daily online adapting improves target coverage and organ-at-risk (OAR) sparing compared with traditional image guided radiation therapy (IGRT); however, the required resources may not be feasible in a busy clinical setting. Less frequent adapting may still benefit cervical cancer patients due to large volume changes of the uterocervix of the treatment course. In this study, the dosimetry from different online adapt-on-demand schedules was compared. MATERIALS AND METHODS: A retrospective cohort of 10 patients with cervical cancer treated with 260 fractions of definitive daily online ART was included. Plans with different adaptation schedules were simulated with adaptations weekly, every other week, once during treatment, and no adaptations (IGRT). These plans were applied to the synthetic computed tomography (CT) images and contours generated during the patient's delivered daily adaptive workflow. The dosimetry of the weekly replan, every-other-week replan, once replan, and IGRT plans were compared using a paired t test. RESULTS: Compared with traditional IGRT plans, weekly and every-other-week ART plans had similar clinical target volume (CTV) coverage, but statistically significant improved sparing of OARs. Weekly and every-other-week ART had reduced bowel bag V40 by 1.57% and 1.41%, bladder V40 by 3.82% and 1.64%, rectum V40 by 8.49% and 7.50%, and bone marrow Dmean by 0.81% and 0.61%, respectively. Plans with a single adaptation had statistically significantly worse target coverage, and moderate improvements in OAR sparing. Of the 18-dose metrics evaluated, improvements were seen in 15 for weekly ART, 14 for every-other-week ART, and 10 for single ART plans compared with IGRT. When every-other-week ART was compared with weekly ART, both plans had similar CTV coverage and OAR sparing with only small improvements in bone marrow dosimetry with weekly ART. CONCLUSIONS: This retrospective work compares different adapt-on-demand treatment schedules using data collected from patients treated with daily online adaptive radiation therapy. Results suggest weekly or every-other-week online ART is beneficial for reduced OAR dose compared with IGRT by exploiting the gradual changes in the uterocervix target volume.


Asunto(s)
Radioterapia Guiada por Imagen , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/radioterapia , Estudios Retrospectivos , Benchmarking , Pelvis
12.
Med Phys ; 50(12): 7324-7337, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37861055

RESUMEN

BACKGROUND: Throughout a patient's course of radiation therapy, maintaining accuracy of their initial treatment plan over time is challenging due to anatomical changes-for example, stemming from patient weight loss or tumor shrinkage. Online adaptation of their RT plan to these changes is crucial, but hindered by manual and time-consuming processes. While deep learning (DL) based solutions have shown promise in streamlining adaptive radiation therapy (ART) workflows, they often require large and extensive datasets to train population-based models. PURPOSE: This study extends our prior research by introducing a minimalist approach to patient-specific adaptive dose prediction. In contrast to our prior method, which involved fine-tuning a pre-trained population model, this new method trains a model from scratch using only a patient's initial treatment data. This patient-specific dose predictor aims to enhance clinical accessibility, thereby empowering physicians and treatment planners to make more informed, quantitative decisions in ART. We hypothesize that patient-specific DL models will provide more accurate adaptive dose predictions for their respective patients compared to a population-based DL model. METHODS: We selected 33 patients to train an adaptive population-based (AP) model. Ten additional patients were selected, and their respective initial RT data served as single samples for training patient-specific (PS) models. These 10 patients contained an additional 26 ART plans that were withheld as the test dataset to evaluate AP versus PS model dose prediction performance. We assessed model performance using Mean Absolute Percent Error (MAPE) by comparing predicted doses to the originally delivered ground truth doses. We used the Wilcoxon signed-rank test to determine statistically significant differences in terms of MAPE between the AP and PS model results across the test dataset. Furthermore, we calculated differences between predicted and ground truth mean doses for segmented structures and determined statistical significance in the differences for each of them. RESULTS: The average MAPE across AP and PS model dose predictions was 5.759% and 4.069%, respectively. The Wilcoxon signed-rank test yielded two-tailed p-value =  2.9802 × 10 - 8 $2.9802\ \times \ {10}^{ - 8}$ , indicating that the MAPE differences between the AP and PS model dose predictions are statistically significant, and 95% confidence interval = [-2.1610, -1.0130], indicating 95% confidence that the MAPE difference between the AP and PS models for a population lies in this range. Out of 24 total segmented structures, the comparison of mean dose differences for 12 structures indicated statistical significance with two-tailed p-values < 0.05. CONCLUSION: Our study demonstrates the potential of patient-specific deep learning models in application to ART. Notably, our method streamlines the training process by minimizing the size of the required training dataset, as only a single patient's initial treatment data is required. External institutions considering the implementation of such a technology could package such a model so that it only requires the upload of a reference treatment plan for model training and deployment. Our single patient learning strategy demonstrates promise in ART due to its minimal dataset requirement and its utility in personalization of cancer treatment.


Asunto(s)
Radioterapia de Intensidad Modulada , Humanos , Radioterapia de Intensidad Modulada/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos
14.
Adv Radiat Oncol ; 8(5): 101256, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37408672

RESUMEN

Purpose: The advent of cone beam computed tomography-based online adaptive radiation therapy (oART) has dramatically reduced the barriers of adaptation. We present the first prospective oART experience data in radiation of head and neck cancers (HNC). Methods and Materials: Patients with HNC receiving definitive standard fractionation (chemo)radiation who underwent at least 1 oART session were enrolled in a prospective registry study. The frequency of adaptations was at the discretion of the treating physician. Physicians were given the option of delivering 1 of 2 plans during adaptation: the original radiation plan transposed onto the cone beam computed tomography with adapted contours (scheduled), and a new adapted plan generated from the updated contours (adapted). A paired t test was used to compare the mean doses between scheduled and adapted plans. Results: Twenty-one patients (15 oropharynx, 4 larynx/hypopharynx, 2 other) underwent 43 adaptation sessions (median, 2). The median ART process time was 23 minutes, median physician time at the console was 27 minutes, and median patient time in the vault was 43.5 minutes. The adapted plan was chosen 93% of the time. The mean volume in each planned target volume (PTV) receiving 100% of the prescription dose for the scheduled versus adapted plan for high-risk PTVs was 87.8% versus 95% (P < .01), intermediate-risk PTVs was 87.3% versus 97.9% (P < .01), and low-risk PTVs was 94% versus 97.8% (P < .01), respectively. The mean hotspot was also lower with adaptation: 108.8% versus 106.4% (P < .01). All but 1 organ at risk (11/12) saw a decrease in their dose with the adapted plans, with the mean ipsilateral parotid (P = .013), mean larynx (P < .01), maximum point spinal cord (P < .01), and maximum point brain stem (P = .035) reaching statistical significance. Conclusions: Online ART is feasible for HNC, with significant improvement in target coverage and homogeneity and a modest decrease in doses to several organs at risk.

15.
Med Phys ; 50(9): 5354-5363, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37459122

RESUMEN

BACKGROUND: The framework of adaptive radiation therapy (ART) was crafted to address the underlying sources of intra-patient variation that were observed throughout numerous patients' radiation sessions. ART seeks to minimize the consequential dosimetric uncertainty resulting from this daily variation, commonly through treatment planning re-optimization. Re-optimization typically consists of manual evaluation and modification of previously utilized optimization criteria. Ideally, frequent treatment plan adaptation through re-optimization on each day's computed tomography (CT) scan may improve dosimetric accuracy and minimize dose delivered to organs at risk (OARs) as the planning target volume (PTV) changes throughout the course of treatment. PURPOSE: Re-optimization in its current form is time-consuming and inefficient. In response to this ART bottleneck, we propose a deep learning based adaptive dose prediction model that utilizes a head and neck (H&N) patient's initial planning data to fine-tune a previously trained population model towards a patient-specific model. Our fine-tuned, patient-specific (FT-PS) model, which is trained using the intentional deep overfit learning (IDOL) method, may enable clinicians and treatment planners to rapidly evaluate relevant dosimetric changes daily and re-optimize accordingly. METHODS: An adaptive population (AP) model was trained using adaptive data from 33 patients. Separately, 10 patients were selected for training FT-PS models. The previously trained AP model was utilized as the base model weights prior to re-initializing model training for each FT-PS model. Ten FT-PS models were separately trained by fine-tuning the previous model weights based on each respective patient's initial treatment plan. From these 10 patients, 26 ART treatment plans were withheld from training as the test dataset for retrospective evaluation of dose prediction performance between the AP and FT-PS models. Each AP and FT-PS dose prediction was compared against the ground truth dose distribution as originally generated during the patient's course of treatment. Mean absolute percent error (MAPE) evaluated the dose differences between a model's prediction and the ground truth. RESULTS: MAPE was calculated within the 10% isodose volume region of interest for each of the AP and FT-PS models dose predictions and averaged across all test adaptive sessions, yielding 5.759% and 3.747% respectively. MAPE differences were compared between AP and FT-PS models across each test session in a test of statistical significance. The differences were statistically significant in a paired t-test with two-tailed p-value equal to 3.851 × 10 - 9 $3.851 \times {10}^{ - 9}$ and 95% confidence interval (CI) equal to [-2.483, -1.542]. Furthermore, MAPE was calculated using each individually segmented structure as an ROI. Nineteen of 24 structures demonstrated statistically significant differences between the AP and FT-PS models. CONCLUSION: We utilized the IDOL method to fine-tune a population-based dose prediction model into an adaptive, patient-specific model. The averaged MAPE across the test dataset was 5.759% for the population-based model versus 3.747% for the fine-tuned, patient-specific model, and the difference in MAPE between models was found to be statistically significant. Our work demonstrates the feasibility of patient-specific models in adaptive radiotherapy, and offers unique clinical benefit by utilizing initial planning data that contains the physician's treatment intent.


Asunto(s)
Radioterapia de Intensidad Modulada , Humanos , Dosificación Radioterapéutica , Estudios Retrospectivos , Radioterapia de Intensidad Modulada/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radiometría , Órganos en Riesgo
16.
Med Phys ; 50(12): 7368-7382, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37358195

RESUMEN

BACKGROUND: MRI-only radiotherapy planning (MROP) is beneficial to patients by avoiding MRI/CT registration errors, simplifying the radiation treatment simulation workflow and reducing exposure to ionizing radiation. MRI is the primary imaging modality for soft tissue delineation. Treatment planning CTs (i.e., CT simulation scan) are redundant if a synthetic CT (sCT) can be generated from the MRI to provide the patient positioning and electron density information. Unsupervised deep learning (DL) models like CycleGAN are widely used in MR-to-sCT conversion, when paired patient CT and MR image datasets are not available for model training. However, compared to supervised DL models, they cannot guarantee anatomic consistency, especially around bone. PURPOSE: The purpose of this work was to improve the sCT accuracy generated from MRI around bone for MROP. METHODS: To generate more reliable bony structures on sCT images, we proposed to add bony structure constraints in the unsupervised CycleGAN model's loss function and leverage Dixon constructed fat and in-phase (IP) MR images. Dixon images provide better bone contrast than T2-weighted images as inputs to a modified multi-channel CycleGAN. A private dataset with a total of 31 prostate cancer patients were used for training (20) and testing (11). RESULTS: We compared model performance with and without bony structure constraints using single- and multi-channel inputs. Among all the models, multi-channel CycleGAN with bony structure constraints had the lowest mean absolute error, both inside the bone and whole body (50.7 and 145.2 HU). This approach also resulted in the highest Dice similarity coefficient (0.88) of all bony structures compared with the planning CT. CONCLUSION: Modified multi-channel CycleGAN with bony structure constraints, taking Dixon-constructed fat and IP images as inputs, can generate clinically suitable sCT images in both bone and soft tissue. The generated sCT images have the potential to be used for accurate dose calculation and patient positioning in MROP radiation therapy.


Asunto(s)
Radioterapia de Intensidad Modulada , Masculino , Humanos , Radioterapia de Intensidad Modulada/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica , Imagen por Resonancia Magnética/métodos , Tomografía Computarizada por Rayos X/métodos , Pelvis , Procesamiento de Imagen Asistido por Computador/métodos
17.
Phys Imaging Radiat Oncol ; 26: 100438, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37342208

RESUMEN

Background and Purpose: A recently developed biology-guided radiotherapy platform, equipped with positron emission tomography (PET) and computed tomography (CT), provides both anatomical and functional image guidance for radiotherapy. This study aimed to characterize performance of the kilovoltage CT (kVCT) system on this platform using standard quality metrics measured on phantom and patient images, using CT simulator images as reference. Materials and Methods: Image quality metrics, including spatial resolution/modular transfer function (MTF), slice sensitivity profile (SSP), noise performance and image uniformity, contrast-noise ratio (CNR) and low-contrast resolution, geometric accuracy, and CT number (HU) accuracy, were evaluated on phantom images. Patient images were evaluated mainly qualitatively. Results: On phantom images the MTF10% is about 0.68 lp/mm for kVCT in PET/CT Linac. The SSP agreed with nominal slice thickness within 0.7 mm. The diameter of the smallest visible target (1% contrast) is about 5 mm using medium dose mode. The image uniformity is within 2.0 HU. The geometric accuracy tests passed within 0.5 mm. Relative to CT simulator images, the noise is generally higher and the CNR is lower in PET/CT Linac kVCT images. The CT number accuracy is comparable between the two systems with maximum deviation from the phantom manufacturer range within 25 HU. On patient images, higher spatial resolution and image noise are observed on PET/CT Linac kVCT images. Conclusions: Major image quality metrics of the PET/CT Linac kVCT were within vendor-recommended tolerances. Better spatial resolution but higher noise and better/comparable low contrast visibility were observed as compared to a CT simulator when images were acquired with clinical protocols.

18.
J Appl Clin Med Phys ; 24(7): e13950, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36877668

RESUMEN

PURPOSE: Varian Ethos utilizes novel intelligent-optimization-engine (IOE) designed to automate the planning. However, this introduced a black box approach to plan optimization and challenge for planners to improve plan quality. This study aims to evaluate machine-learning-guided initial reference plan generation approaches for head & neck (H&N) adaptive radiotherapy (ART). METHODS: Twenty previously treated patients treated on C-arm/Ring-mounted were retroactively re-planned in the Ethos planning system using a fixed 18-beam intensity-modulated radiotherapy (IMRT) template. Clinical goals for IOE input were generated using (1) in-house deep-learning 3D-dose predictor (AI-Guided) (2) commercial knowledge-based planning (KBP) model with universal RTOG-based population criteria (KBP-RTOG) and (3) an RTOG-based constraint template only (RTOG) for in-depth analysis of IOE sensitivity. Similar training data was utilized for both models. Plans were optimized until their respective criteria were achieved or DVH-estimation band was satisfied. Plans were normalized such that the highest PTV dose level received 95% coverage. Target coverage, high-impact organs-at-risk (OAR) and plan deliverability was assessed in comparison to clinical (benchmark) plans. Statistical significance was evaluated using a paired two-tailed student t-test. RESULTS: AI-guided plans were superior to both KBP-RTOG and RTOG-only plans with respect to clinical benchmark cases. Overall, OAR doses were comparable or improved with AI-guided plans versus benchmark, while they increased with KBP-RTOG and RTOG plans. However, all plans generally satisfied the RTOG criteria. Heterogeneity Index (HI) was on average <1.07 for all plans. Average modulation factor was 12.2 ± 1.9 (p = n.s), 13.1 ± 1.4 (p = <0.001), 11.5 ± 1.3 (p = n.s.) and 12.2 ± 1.9 for KBP-RTOG, AI-Guided, RTOG and benchmark plans, respectively. CONCLUSION: AI-guided plans were the highest quality. Both KBP-enabled and RTOG-only plans are feasible approaches as clinics adopt ART workflows. Similar to constrained optimization, the IOE is sensitive to clinical input goals and we recommend comparable input to an institution's planning directive dosimetric criteria.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Cuello , Órganos en Riesgo , Radioterapia de Intensidad Modulada/métodos , Aprendizaje Automático
19.
Clin Transl Radiat Oncol ; 40: 100616, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36968578

RESUMEN

•AI dose predictor was fully integrated with treatment planning system and used as a physicain decision support tool to improve uniformity of practice.•Model was trained based on our standard of practice, but implemented at the time of expansion with 3 new physicians join the practice.•Phase 1 retrospective evaluation demonstrated the non-uniform practice among 3 MDs and only 52.9% frequency planner can achieve physicians' directives.•Significant improvement in practice uniformity of practice was observed after utilizing AI as DST and 80.4% frequency clinical plan can achieve AI-guided physician directives.

20.
J Appl Clin Med Phys ; 24(4): e13918, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36729373

RESUMEN

PURPOSE: Ethos CBCT-based adaptive radiotherapy (ART) system can generate an online adaptive plan by re-optimizing the initial reference plan based on the patient anatomy at the treatment. The optimization process is fully automated without any room for human intervention. Due to the change in anatomy, the ART plan can be significantly different from the initial plan in terms of plan parameters such as the aperture shapes and number of monitor units (MUs). In this study, we investigated the feasibility of using calculation-based patient specific QA for ART plans in conjunction with measurement-based and calculation-based QA for initial plans to establish an action level for the online ART patient-specific QA. METHODS: A cohort of 98 cases treated on CBCT-based ART system were collected for this study. We performed measurement-based QA using ArcCheck and calculation-based QA using Mobius for both the initial plan and the ART plan for analysis. For online the ART plan, Mobius calculation was conducted prior to the delivery, while ArcCheck measurement was delivered on the same day after the treatment. We first investigated the modulation factors (MFs) and MU numbers of the initial plans and ART plans, respectively. The γ passing rates of initial and ART plan QA were analyzed. Then action limits were derived for QA calculation and measurement for both initial and online ART plans, respectively, from 30 randomly selected patient cases, and were evaluated using the other 68 patient cases. RESULTS: The difference in MF between initial plan and ART-plan was 12.9% ± 12.7% which demonstrates their significant difference in plan parameters. Based on the patient QA results, pre-treatment calculation and measurement results are generally well aligned with ArcCheck measurement results for online ART plans, illustrating their feasibility as an indicator of failure in online ART QA measurements. Furthermore, using 30 randomly selected patient cases, the γ analysis action limit derived for initial plans and ART plans are 89.6% and 90.4% in ArcCheck QA (2%/2 mm) and are 92.4% and 93.6% in Mobius QA(3%/2 mm), respectively. According to the calculated action limits, the ArcCheck measurements for all the initial and ART plans passed QA successfully while the Mobius calculation action limits flagged seven and four failure cases respectively for initial plans and ART plans, respectively. CONCLUSION: An ART plan can be substantially different from the initial plan, and therefore a separate session of ART plan QA is needed to ensure treatment safety and quality. The pre-treatment QA calculation via Mobius can serve as a reliable indicator of failure in online ART plan QA. However, given that Ethos ART system is still relatively new, ArcCheck measurement of initial plan is still in practice. It may be skipped as we gain more experience and have better understanding of the system.


Asunto(s)
Radioterapia de Intensidad Modulada , Tomografía Computarizada de Haz Cónico Espiral , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Garantía de la Calidad de Atención de Salud , Dosificación Radioterapéutica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...